Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.162
Filtrar
1.
Chirality ; 36(4): e23665, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570326

RESUMO

In this paper, the amino acid chiral ionic liquid (AACIL) was prepared with L-phenylalanine and imidazole. It was characterized by CD, FT-IR, 1H NMR, and 13C NMR spectrum. The chiral recognition sensor was constructed with AACIL and Cu(II), which exhibited different chiral visual responses (solubility or color difference) to the enantiomers of glutamine (Gln) and phenylalanine (Phe). The effects of solvent, pH, time, temperature, metal ions, and other amino acids on visual chiral recognition were optimized. The minimum concentrations of Gln and Phe for visual chiral recognition were 0.20 mg/ml and 0.28 mg/ml, respectively. The mechanism of chiral recognition was investigated by FT-IR, TEM, SEM, TG, XPS, and CD. The location of the host-guest inclusion or molecular placement has been conformationally searched based on Gaussian 09 software.


Assuntos
Aminoácidos , Líquidos Iônicos , Aminoácidos/química , Fenilalanina/química , Glutamina , Líquidos Iônicos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estereoisomerismo
2.
ACS Appl Mater Interfaces ; 16(14): 17080-17091, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557004

RESUMO

Psoriasis is a systemic, recurrent, chronic autoimmune skin disease. However, psoriasis drugs have poor skin permeability and high toxicity, resulting in low bioavailability and affecting their clinical application. In this study, we propose a curcumin-based ionic liquid hydrogel loaded with ilomastat (Cur-Car-IL@Ilo hydrogel), which can effectively maintain the sustained release of drugs and improve the skin permeability of drugs. We used a model of imiquimod-induced psoriasis and demonstrated that local application of Cur-Car-IL@Ilo hydrogel can improve skin lesions in mice with significantly reduced expression levels of inflammatory factors, matrix metalloproteinase 8, and collagen-I. The expressions of iron death-related proteins SLC7A11 and ASL4 were significantly decreased after treatment with Cur-Car-IL@Ilo hydrogel. Flora analysis showed that the content of anaerotruncus, proteus, and UCG-009 bacteria in the gut of psoriatic mice increased. The levels of paludicola, parabacteroides, prevotellaceae_UCG-001, escherichia-shigella, and aerococcus decreased, and the levels of some of the above bacteria tended to be normal after treatment. Therefore, the curcumin-based ionic liquid hydrogel can be used as a multifunctional, nonirritating, noninvasive, and highly effective percutaneous treatment of psoriasis.


Assuntos
Curcumina , Líquidos Iônicos , Psoríase , Camundongos , Animais , Curcumina/farmacologia , Curcumina/uso terapêutico , Hidrogéis/uso terapêutico , Psoríase/tratamento farmacológico , Psoríase/patologia , Administração Cutânea , Modelos Animais de Doenças
3.
Molecules ; 29(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611804

RESUMO

One can foresee a very near future where ionic liquids will be used in applications such as biomolecular chemistry or medicine. The molecular details of their interaction with biological matter, however, are difficult to investigate due to the vast number of combinations of both the biological systems and the variety of possible liquids. Here, we provide a computational study aimed at understanding the interaction of a special class of biocompatible ionic liquids (choline-aminoate) with two model biological systems: an oligopeptide and an oligonucleotide. We employed molecular dynamics with a polarizable force field. Our results are in line with previous experimental and computational evidence on analogous systems and show how these biocompatible ionic liquids, in their pure form, act as gentle solvents for protein structures while simultaneously destabilizing DNA structure.


Assuntos
Líquidos Iônicos , Medicina , Simulação por Computador , Solventes , Colina
4.
Chem Rev ; 124(8): 4679-4733, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38621413

RESUMO

The review presents a detailed discussion of the evolving field studying interactions between ionic liquids (ILs) and biological systems. Originating from molten salt electrolytes to present multiapplication substances, ILs have found usage across various fields due to their exceptional physicochemical properties, including excellent tunability. However, their interactions with biological systems and potential influence on living organisms remain largely unexplored. This review examines the cytotoxic effects of ILs on cell cultures, biomolecules, and vertebrate and invertebrate organisms. Our understanding of IL toxicity, while growing in recent years, is yet nascent. The established findings include correlations between harmful effects of ILs and their ability to disturb cellular membranes, their potential to trigger oxidative stress in cells, and their ability to cause cell death via apoptosis. Future research directions proposed in the review include studying the distribution of various ILs within cellular compartments and organelles, investigating metabolic transformations of ILs in cells and organisms, detailed analysis of IL effects on proteins involved in oxidative stress and apoptosis, correlation studies between IL doses, exposure times and resulting adverse effects, and examination of effects of subtoxic concentrations of ILs on various biological objects. This review aims to serve as a critical analysis of the current body of knowledge on IL-related toxicity mechanisms. Furthermore, it can guide researchers toward the design of less toxic ILs and the informed use of ILs in drug development and medicine.


Assuntos
Líquidos Iônicos , Estresse Oxidativo , Líquidos Iônicos/química , Líquidos Iônicos/farmacologia , Animais , Humanos , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos
5.
Anal Chim Acta ; 1303: 342504, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38609259

RESUMO

BACKGROUND: Food safety has always been a great concern, and the detection of additives is vital to ensuring food safety. Therefore, there is a necessity to develop a method that can quickly and efficiently separate and detect additives in food. High performance liquid chromatography is widely used in the analysis and testing of food additives. Ionic liquids have attracted wide attention in the preparation of high performance liquid chromatography stationary phases owing to their high stability, low vapor pressure and adjustable structure. RESULTS: We developed a novel dicationic imidazole ionic liquid stationary phase for the simultaneous determination of organic preservatives (sodium benzoate, potassium sorbate) and inorganic preservatives (nitrate and nitrite) in foodstuffs under mixed-mode chromatography. The method had the advantages of easy operation, high reproducibility, good linearity and precision. In the detection of these four preservatives, the limit of detection ≤0.4740 mg⋅L-1 and the limit of quantification ≤1.5800 mg⋅L-1. The intra-day and inter-day precision were less than 4.02%, and the recovery rate was 95.90∼100.19 %. At the same time, we also characterized the stationary phase, explored the mechanism and evaluated the chromatographic performance. The stationary phase was able to operate under the mixed mode of reversed phase/hydrophilic interaction/ion exchange chromatography, and it was capable of separating hydrophilic substances, hydrophobic substances, acids, and inorganic anionic substances with good separation efficiency and had high column efficiency. SIGNIFICANCE: In summary, the stationary phase has a promising application in the routine analysis of organic and inorganic preservatives in food. In addition, the stationary phase has good separation ability for hydrophilic, hydrophobic, ionic substances and complex samples, making it a prospective material for chromatographic separation.


Assuntos
Líquidos Iônicos , Reprodutibilidade dos Testes , Imidazóis , Ciclo Celular , Cromatografia Líquida de Alta Pressão
6.
Anal Chim Acta ; 1303: 342544, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38609271

RESUMO

BACKGROUND: Aflatoxin B1 (AFB1) and its precursors contaminate food and agricultural products, posing a significant risk to food safety and human health, but simultaneous and effective extraction and determination of AFB1 and its precursors with varied structures is still a challenging task. RESULTS: In this study, a bisimidazolium-type ionic liquid functionalized mesoporous multipod silica (SiO2@mPMO-IL(im)2) was fabricated to extract AFB1 and its two precursors, i.e., averantin and sterigmatocystin. The SiO2@mPMO-IL(im)2 could simultaneously extract three targets with varied structures based on the multipods, mesopores, and multifunctional groups. The density functional theory calculations further verified the multiple interactions between SiO2@mPMO-IL(im)2 and targets. The fabricated SiO2@mPMO-IL(im)2 could effectively extract and determine three targets in grains by combing with dispersive solid-phase extraction and high-performance liquid chromatography. Good linearity (r2 > 0.9978), low LODs (0.9-1.5 µg kg-1) and LOQs (3.0-4.5 µg kg-1), satisfactory spiked recoveries (92.5%-106.8%) and high precisions (RSD<6.4%) were observed. SIGNIFICANCE AND NOVELTY: This work demonstrates the feasibility of SiO2@mPMO-IL(im)2 for simultaneous and effective extraction of toxins with varied structures and provides a promising sample preparation for the analysis of AFB1 and its precursors in grain samples.


Assuntos
Aflatoxina B1 , Líquidos Iônicos , Humanos , Dióxido de Silício , Grão Comestível , Agricultura
7.
Chemosphere ; 355: 141872, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570046

RESUMO

Adsorption of per- and poly-fluoroalkyl substances (PFAS) on activated carbon (AC) is considerably hindered by the surface water constituents, degrading the ability of the AC adsorption process to remove PFAS in drinking water treatment. Herein, we developed ionic-liquid-impregnated AC (IL/AC) as an alternative to AC for PFAS sorption and demonstrated its performance with real surface water for the first time. Ionic liquids (ILs) of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (IL(C2)) and 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (IL(C6)) were selected from among 272 different ILs using the conductor-like screening model for realistic solvents (COSMO-RS) simulation. Impregnation of the ILs in AC was verified using various analytical techniques. Although the synthesized IL/ACs were less effective than pristine AC in treating PFAS in deionized water, their performances were less impacted by the surface water constituents, resulting in comparable or sometimes better performances than pristine AC for treating PFAS in surface water. The removal efficiencies of 10 wt% IL(C6)/AC for six PFAS were 1.40-1.96 times higher than those of pristine AC in a surface water sample containing 2.6 mg/L dissolved organic carbon and millimolar-level divalent cation concentration. PFAS partitioning from the surface water to ILs was not hindered by dissolved organic matter and was enhanced by the divalent cations, indicating the advantages of IL/ACs for treating significant amounts of PFAS in water. The synthesized IL/ACs were effective at treating coexisting pharmaceutical and personal-care products in surface water, showcasing their versatility for treating a broad range of water micropollutants.


Assuntos
Água Potável , Fluorocarbonos , Líquidos Iônicos , Carvão Vegetal , Simulação por Computador
8.
J Mater Chem B ; 12(16): 3908-3916, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38567452

RESUMO

The fabrication of shape-selective coinage metal nanoclusters (MNCs) has promising applications due to their exceptional physical and chemical molecule-like properties. However, the stability of the specific geometry of the nanoclusters, such as their cubic shapes, is unclear and has been unraveled by assessing the nanoclusters' interactions with different environments. In this work, we investigate the morphological stability of cubic structured, coinage metal nanoclusters of varying sizes ranging from 14 to 1099 atoms. The impact of solvent environments like water and the presence of ionic liquids (IL) on the stabilization of the MNCs were assessed using molecular dynamics (MD) simulations. In general, smaller MNCs composed of less than 256 atoms encountered structural distortion easily compared to the larger ones, which preserved their cubic morphology with minimal surface aberrations in water. However, in the presence of 4M 1-butyl-1,1,1-trimethyl ammonium methane sulfonate [N1114][C1SO3] IL solution, the overall cubic shape of the MNCs was successfully preserved. Strikingly, it is observed that in contrast to the noble MNCs like Au and Ag, the cubic morphology for Cu MNCs with sizes less than 256 atoms exhibited significant stability even in the absence of IL.


Assuntos
Cobre , Nanopartículas Metálicas , Simulação de Dinâmica Molecular , Cobre/química , Nanopartículas Metálicas/química , Líquidos Iônicos/química , Tamanho da Partícula , Propriedades de Superfície , Água/química
9.
Nat Commun ; 15(1): 2651, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531881

RESUMO

Despite orientationally variant tears of the meniscus, suture repair is the current clinical gold treatment. However, inaccessible tears in company with re-tears susceptibility remain unresolved. To extend meniscal repair tools from the perspective of adhesion and regeneration, we design a dual functional biologic-released bioadhesive (S-PIL10) comprised of methacrylated silk fibroin crosslinked with phenylboronic acid-ionic liquid loading with growth factor TGF-ß1, which integrates chemo-mechanical restoration with inner meniscal regeneration. Supramolecular interactions of ß-sheets and hydrogen bonds richened by phenylboronic acid-ionic liquid (PIL) result in enhanced wet adhesion, swelling resistance, and anti-fatigue capabilities, compared to neat silk fibroin gel. Besides, elimination of reactive oxygen species (ROS) by S-PIL10 further fortifies localized meniscus tear repair by affecting inflammatory microenvironment with dynamic borate ester bonds, and S-PIL10 continuously releases TGF-ß1 for cell recruitment and bridging of defect edge. In vivo rabbit models functionally evidence the seamless and dense reconstruction of torn meniscus, verifying that the concept of meniscus adhesive is feasible and providing a promising revolutionary strategy for preclinical research to repair meniscus tears.


Assuntos
Ácidos Borônicos , Fibroínas , Líquidos Iônicos , Menisco , Animais , Coelhos , Hidrogéis , Fator de Crescimento Transformador beta1
10.
Chem Rev ; 124(6): 3037-3084, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38437627

RESUMO

Proteins are highly labile molecules, thus requiring the presence of appropriate solvents and excipients in their liquid milieu to keep their stability and biological activity. In this field, ionic liquids (ILs) have gained momentum in the past years, with a relevant number of works reporting their successful use to dissolve, stabilize, extract, and purify proteins. Different approaches in protein-IL systems have been reported, namely, proteins dissolved in (i) neat ILs, (ii) ILs as co-solvents, (iii) ILs as adjuvants, (iv) ILs as surfactants, (v) ILs as phase-forming components of aqueous biphasic systems, and (vi) IL-polymer-protein/peptide conjugates. Herein, we critically analyze the works published to date and provide a comprehensive understanding of the IL-protein interactions affecting the stability, conformational alteration, unfolding, misfolding, and refolding of proteins while providing directions for future studies in view of imminent applications. Overall, it has been found that the stability or purification of proteins by ILs is bispecific and depends on the structure of both the IL and the protein. The most promising IL-protein systems are identified, which is valuable when foreseeing market applications of ILs, e.g., in "protein packaging" and "detergent applications". Future directions and other possibilities of IL-protein systems in light-harvesting and biotechnology/biomedical applications are discussed.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Proteínas/química , Solventes/química , Água/química , Polímeros
11.
Food Chem ; 447: 138917, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38452540

RESUMO

The polymer ionic liquid (1-allyl-3-butylimidazolium bromide) enhanced silica aerogel was modified onto the surface of stainless-steel mesh to immobilize aptamer-1 for the specific recognition of AFB1. The porous channels of silica aerogel could prevent the interference of macromolecules in food samples. Enzyme kinetic analysis showed that the MoS2/Au was an effective peroxidase mimic with a relatively low Michaelis constant (Km) value of 0.17 mM and a high catalytic rate of 3.87 × 10-8 mol (L·s)-1, which exhibited obvious superiority compared with horseradish peroxidase. The established "sandwich-structure" biosensor was coupled with the smartphone "Color Picker" application was used to detect AFB1 with a wide linear range (1-100 ng mL-1) and low detection limit (0.25 ng mL-1). The anti-interference ability of the established biosensor was evaluated by adding different concentrations of standards in corn, peanut, and wheat and matrix effects were 90.84-106.11 %. The results showed that this method demonstrated high specificity, sensitivity, rapidity and low interference in food samples.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Líquidos Iônicos , Dióxido de Silício , Aflatoxina B1/análise , Colorimetria/métodos , Smartphone , Cinética , Técnicas Biossensoriais/métodos , Limite de Detecção
12.
Chem Commun (Camb) ; 60(30): 4036-4039, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38466016

RESUMO

Herein, we report ethosome (ET) formulations composed of a safe amount of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC)-based ionic liquid with various concentrations of ethanol as a carrier for the transdermal delivery of a high molecular weight drug, insulin. The Insulin-loaded ET vesicles exhibited long-term stability compared to conventional DMPC ETs, showing significantly higher drug encapsulation efficiency and increased skin permeation ability.


Assuntos
Líquidos Iônicos , Insulina , Dimiristoilfosfatidilcolina , Administração Cutânea , Pele , Preparações Farmacêuticas , Lipossomos
13.
Int J Biol Macromol ; 264(Pt 2): 130775, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467210

RESUMO

There have been continuous quests for suitable solvents for starch, given the importance of effective starch dissolution in its modification and subsequent materials production. In light of this, the potential of hydroxyl-functionalized ionic liquid (IL) as a promising solvent for starch was investigated. Within this study, a hydroxyl-functionalized IL 1-(2,3-dihydroxypropyl)-3-methylimidazole chloride ([Dhpmim][Cl]) was synthesized, and the dissolution of starch in this IL and its aqueous solutions was examined. Starch (5.35 wt%) was completely dissolved in [Dhpmim][Cl] within 2 h at 100 °C. The solubility of starch in [Dhpmim][Cl]-water mixtures initially increased and then decreased with rising water content. The optimal ratio was found to be 1:9 (wt/wt) water:[Dhpmim][Cl], achieving the highest solubility at 9.28 wt%. Density functional theory (DFT) simulations elucidated the possible interactions between starch and solvents. After dissolution and regeneration in the 1:9 water:[Dhpmim][Cl] mixture, starch showed no discernible change in the molecular structure, with no derivatization reaction observed. Regenerated starch exhibited a transformation in crystalline structure from A-type to V-type, and its relative crystallinity (12.4 %) was lower than that of native starch (25.2 %), resulting in decreased thermal stability. This study suggests that the hydroxyl-functionalized IL, [Dhpmim][Cl], and its aqueous solutions serve as effective solvents for starch dissolution.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Amido/química , Imidazóis/química , Água/química , Solventes/química , Soluções , Solubilidade , Radical Hidroxila , Cloretos
14.
Nanotechnology ; 35(26)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38527365

RESUMO

The fruit extract ofBuchanania obovataand the eutectic-based ionic liquid were utilized, in an eco-friendly, inexpensive, simple method, for synthesizing zinc oxide nanoparticles (ZnO NPs). The influence of the reducing, capping and stabilizing agents, in both mediums, on the structure, optical, and morphological properties of ZnO NPs was extensively investigated. The surface plasmon resonance peaks were observed at 340 nm and 320 nm for the fruit-based and the eutectic-based ionic liquid mediums, respectively, indicating the formation of ZnO NPs. XRD results confirmed the wurtzite structure of the ZnO NPs, exhibiting hexagonal phases in the diffraction patterns. The SEM and TEM images display that the biosynthesized ZnO NPs exhibit crystalline and hexagonal shape, with an average size of 40 nm for the fruit-based and 25 nm for the eutectic-based ionic liquid. The Brunauer-Emmett-Teller (BET) surface area analysis, revealed a value ∼13 m2g-1for ZnO NPs synthesized using the fruit extract and ∼29 m2g-1for those synthesized using the eutectic-based ionic liquid. The antibacterial activity of the biosynthesized ZnO NPs was assessed against clinically isolated Gram-negative (E. coli) and Gram-positive (S. aureus) bacterial strains using the inhibition zone method. The ZnO NPs produced from the eutectic-based ionic liquids confirmed superior antibacterial activity against bothS. aureusandE. colicompared to those mediated by the utilized fruit extract. At a concentration of 1000, the eutectic-based ionic liquid mediated ZnO NPs displayed a maximum inhibition zone of 16 mm againstS. aureus, while againstE. coli, a maximum inhibition zone of 15 mm was observed using the fruit extract mediated ZnO NPs. The results of this study showed that the biosynthesized ZnO NPs can be utilized as an efficient substitute to the frequently used chemical drugs and covering drug resistance matters resulted from continual usage of chemical drugs by users.


Assuntos
Líquidos Iônicos , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Líquidos Iônicos/farmacologia , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Testes de Sensibilidade Microbiana , Nanopartículas Metálicas/química
15.
Bioresour Technol ; 399: 130610, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508284

RESUMO

Lignin utilization in value-added co-products is an important component of enabling cellulosic biorefinery economics. However, aqueous dilute acid pretreatments yield lignins with limited applications due to significant modification during pretreatment, low solubility in many solvents, and high content of impurities (ash, insoluble polysaccharides). This work addresses these challenges and investigates the extraction and recovery of lignins from lignin-rich insoluble residue following dilute acid pretreatment and enzymatic hydrolysis of corn stover using three extraction approaches: ethanol organosolv, NaOH, and an ionic liquid. The recovered lignins exhibited recovery yields ranging from 30% for the ionic liquid, 44% for the most severe acid ethanol organosolv condition tested, and up to 86% for the most severe NaOH extraction condition. Finally, the fractional solubilities of different recovered lignins were assessed in a range of solvents and these solubilities were used to estimate distributions of Hildebrand and Hansen solubility parameters using a novel approach.


Assuntos
Líquidos Iônicos , Lignina , Lignina/química , Zea mays/química , Hidróxido de Sódio , Solventes , Etanol/química , Ácidos , Hidrólise
16.
ACS Appl Mater Interfaces ; 16(14): 18063-18074, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38537174

RESUMO

Bacterial infections have become a serious threat to public health. The utilization of antibacterial textiles offers an effective way to combat bacterial infections at the source, instead of relying solely on antibiotic consumption. Herein, efficient and durable antibacterial fibers based on quercetin and cellulose were prepared by a triaxial microfluidic spinning technology using ionic liquids (ILs) as the solvents. It was indicated that the structure and properties of the antibacterial fibers were affected by the type of IL and the flow rates during the triaxial microfluidic spinning process. Quercetin regenerated from [Emim]Ac underwent structural transformation and obtained an increased water solubility, while quercetin regenerated from [Emim]DEP remained unchanged, which was proven by FI-IR, XRD, and UV analyses. Furthermore, antibacterial fibers regenerated from [Emim]Ac exhibited the highest antibacterial activity of 96.9% against S. aureus, achieved by reducing the inner-to-outer flow rate ratio to 0 and concentrating quercetin at the center of fibers. On the other hand, when [Emim]DEP was used as the solvent, balancing the inner-to-outer flow rate ratio to concentrate quercetin in the middle layer of the fiber was optimal for achieving the best antibacterial activity of 93.3% because it promised both the higher encapsulation efficiency and release rate. Computational fluid dynamics (CFD) mathematically predicted the solvent exchange process during triaxial spinning, explaining the influence of IL types and flow rates on quercetin distribution and encapsulation efficiency. It was indicated that optimizing the distribution of antibacterial agents within the fibers can fully unleash its antibacterial potential while preserving the mechanical properties of the fiber. Therefore, the proposed simple triaxial spinning strategy provides valuable insights into the design of biomedical materials.


Assuntos
Infecções Bacterianas , Líquidos Iônicos , Humanos , Solventes/química , Líquidos Iônicos/farmacologia , Líquidos Iônicos/química , Microfluídica , Staphylococcus aureus , Quercetina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química
17.
J Biosci Bioeng ; 137(5): 329-334, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38461105

RESUMO

Hyperthermostable endoglucanases of glycoside hydrolase family 12 from the archaeon Pyrococcus furiosus (EGPf) catalyze the hydrolysis of ß-1,4-glucosidic linkages in cellulose and ß-glucan structures that contain ß-1,3- and ß-1,4-mixed linkages. In this study, EGPf was heterologously expressed with Aspergillus niger and the recombinant enzyme was characterized. The successful expression of EGPf resulted as N-glycosylated protein in its secretion into the culture medium. The glycosylation of the recombinant EGPf positively impacted the kinetic characterization of EGPf, thereby enhancing its catalytic efficiency. Moreover, glycosylation significantly boosted the thermostability of EGPf, allowing it to retain over 80% of its activity even after exposure to 100 °C for 5 h, with the optimal temperature being above 120 °C. Glycosylation did not affect the pH stability or salt tolerance of EGPf, although the glycosylated compound exhibited a high tolerance to ionic liquids. EGPf displayed the highest specific activity in the presence of 20% (v/v) 1-butyl-3-methylimidazolium chloride ([Bmim]Cl), reaching approximately 2.4 times greater activity than that in the absence of [Bmim]Cl. The specific activity was comparable to that without the ionic liquid even in the presence of 40% (v/v) [Bmim]Cl. Glycosylated EGPf has potential as an enzyme for saccharifying cellulose under high-temperature conditions or with ionic liquid treatment due to its exceptional thermostability and ionic liquid tolerance. These results underscore the potential of N-glycosylation as an effective strategy to further enhance both the thermostability of highly thermostable archaeal enzymes and the hydrolysis of barley cellulose in the presence of [Bmim]Cl.


Assuntos
Celulase , Líquidos Iônicos , Pyrococcus furiosus , Celulase/metabolismo , Pyrococcus furiosus/genética , Pyrococcus furiosus/metabolismo , Glicosilação , Celulose/metabolismo , Estabilidade Enzimática
18.
Colloids Surf B Biointerfaces ; 237: 113836, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479261

RESUMO

The enzyme immobilization technology has become a key tool in the field of enzyme applications; however, improving the activity recovery and stability of the immobilized enzymes is still challenging. Herein, we employed a magnetic carboxymethyl cellulose (MCMC) nanocomposite modified with ionic liquids (ILs) for covalent immobilization of lipase, and used Ca-based metal-organic frameworks (MOFs) as the support skeleton and protective layer for immobilized enzymes. The ILs contained long side chains (eight CH2 units), which not only enhanced the hydrophobicity of the carrier and its hydrophobic interaction with the enzymes, but also provided a certain buffering effect when the enzyme molecules were subjected to compression. Compared to free lipase, the obtained CaBPDC@PPL-IL-MCMC exhibited higher specific activity and enhanced stability. In addition, the biocatalyst could be easily separated using a magnetic field, which is beneficial for its reusability. After 10 cycles, the residual activity of CaBPDC@PPL-IL-MCMC could reach up to 86.9%. These features highlight the good application prospects of the present immobilization method.


Assuntos
Líquidos Iônicos , Estruturas Metalorgânicas , Lipase/química , Enzimas Imobilizadas/química , Cálcio , Líquidos Iônicos/química , Estabilidade Enzimática
19.
Mar Pollut Bull ; 201: 116280, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518574

RESUMO

The utilization of chemical dispersants as a way of mitigating of oil spills in marine eco-system has been extensively documented worldwide. Hence, in this research we have successfully synthesized two amphiphilic asymmetric Dicaionic Ionic Liquids (DILs). The efficacy of these synthesized DILs as dispersants was assessed using the baffled flask test (BFT). The results indicated a dispersant effectiveness ranging from 47.98 % to 79.76 % for the dispersion of heavy crude oil across various temperature ranges (10-30 °C). These dispersant-to-oil ratios (DOR) were maintained at 3: 100 (V%), showcasing promising dispersant capabilities for mitigating heavy crude oil spills. Additionally, acute toxicity tests conducted on Nile tilapia and Oreochromis niloticus have demonstrated the relatively low toxicity of the IL-dispersants, with Lethal Concentration 50 (LC50) values exceeding 100 ppm after 96 h. This suggests a practically slight toxic effect on the tested fish. In summary, the newly developed IL-dispersants are considered to be conducive to environmentally benign oil spill remediation.


Assuntos
Antracenos , Líquidos Iônicos , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Animais , Líquidos Iônicos/toxicidade , Tensoativos/toxicidade , Poluição por Petróleo/análise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Petróleo/toxicidade
20.
J Chem Inf Model ; 64(6): 1996-2007, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38452014

RESUMO

Viruses are a group of widespread organisms that are often responsible for very dangerous diseases, as most of them follow a mechanism to multiply and infect their hosts as quickly as possible. Pathogen viruses also mutate regularly, with the result that measures to prevent virus transmission and recover from the disease caused are often limited. The development of new substances is very time-consuming and highly budgeted and requires the sacrifice of many living organisms. Computational chemistry methods allow faster analysis at a much lower cost and, most importantly, reduce the number of living organisms sacrificed experimentally to a minimum. Ionic liquids (ILs) are a group of chemical compounds that could potentially find a wide range of applications due to their potential virucidal activity. In our study, we conducted a complex computational analysis to predict the antiviral activity of ionic liquids against three surrogate viruses: two nonenveloped viruses, Listeria monocytogenes phage P100 and Escherichia coli phage MS2, and one enveloped virus, Pseudomonas syringae phage Phi6. Based on experimental data of toxic activity (logEC90), we assigned activity classes to 154 ILs. Prediction models were created and validated according to the Organization for Economic Co-operation and Development (OECD) recommendations using the Classification Tree method. Further, we performed an external validation of our models through virtual screening on a set of 1277 theoretically generated ionic liquids and then selected 10 active ionic liquids, which were synthesized to verify their activity against the analyzed viruses. Our study proved the effectiveness and efficiency of computational methods to predict the antiviral activity of ionic liquids. Thus, computational models are a cost-effective alternative approach compared with time-consuming experimental studies where live animals are involved.


Assuntos
Líquidos Iônicos , Animais , Líquidos Iônicos/farmacologia , Líquidos Iônicos/química , Aprendizado de Máquina , Antivirais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...